对于“大数据”(Big data),研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
01 大数据时代已来
随着网络时代日益信息化,移动互联网、社交网络、电子商务大大拓展了互联网的疆土与应用领域,我们正处在一个数据爆炸性增长的 “大数据”时代,大数据对社会经济、政治、文化,生活等方面产生深远的影响,大数据时代对我们的数据驾驭能力提出了新的挑战。
大数据给我们带来哪些便利?商业精准营销、终端信息互联和创造就业。
大数据时代,商业环境已悄然发生变化。普通地铁、公交、公园广场等随时都能看到一些智能终端设备、产品宣传、频繁互动的社交网络、法律法规、安全知识的普及,使平常只是浏览网页的网民意识由模糊变得清晰,企业也有机会针对大量消费者数据进行分析,实现在大数据时代下的精准营销;
基于移动互联网、物联网、社交网络、数字家庭、智慧城市等信息技术的不同来源数据进行转换、分析和优化,将各种结果相互反馈到不同应用中,以改善用户的体验,创造最大的商业价值、经济价值以及社会价值,达到在大数据时代,人们消息之间的互联互通。
大数据时代的另一个明显便利是:企业、政府需要一大批精通业务又能做大数据分析的人才,调查显示,在美国,对拥有大量数据分析技能(包括机器学习和高级统计分析)的人才的需求可能超过预期供应的50%~60%,在大数据时代下,造就了一批新的就业岗位。
02 大数据时代面临的安全问题及应对方案
数据的安全存储问题
目前,数据的存储主要以云架构为技术基础,采用虚拟分布式存储的方式,在云端进行数 据信息的操作处理,主要可通过如下几种方式来实现数据的存储安全。
差异化存储:首先可以对数据先进行分类,再对已分类的一般数据、常用数据、重要数据实施差异保存,并存储在不同位置,权限也根据用户具体的角色或基于新一代的访问控制模型ABAC进行分类管理,采用私有存储与云存储相结合的模式存储。
分散存储:利用已有的云存储技术,将数据块分散在多个位置上。采用分散保存的方式,不仅能保证其实用性,而且在一定程度上也提高了其安全性。
“数”“密”分离存储:还可以采用加密的数据和“密匙”相分离的方式,达到数据与“密匙”互相制约的效果,同时管理数据和使用数据也实现同样的分离,并加强“密匙”的存储、修改、产生等周期。
数据的访问(使用)安全
大数据时代,如果数据信息被黑客攻击利用,存在关键数据被破坏,甚至数据丢失的风险。所以想要保护数据信息的安全,必须要加强对数据信息的访问控制。
基于端侧的访问控制:设置访问数据时,需对终端MAC绑定。设置不同等级的控制,并给予授权访问。
基于数据的访问控制:在原有的端侧访问控制的基础之上,再对数据敏感层的分类分级,并规定不同属性下的安全访问权限,设置身份认证和权限控制,真正做到安全可控。对数据本身的拥有者可以设置所有或部分的访问权限。
基于ABAC的访问控制:在基于端侧环境、用户身份基础上,搭配最新访问控制策略ABAC,将访问主体属性、客体属性和环境条件结合起来,通过动态计算一个或一组属性,判断一个用户是否具有数据访问权限。
防御数据被攻击
想要数据安全,必须加强安全防护。
优化传统网络安全技术:传统网络安全技术以加密技术、访问控制技术、防火墙技术、入 侵检测技术、认证技术为主。大数据时代信息技术更新迭代速度加快, 企业内网络信息安全管理人员需要加强对传统技术的创新,确保内部机房环境、视频监控系统、防火墙、入侵防御系统、数据库审计系统、应用交付系统的安全。
使用大数据安全技术:保障网络信息数据各个生命周期的安全,降低企业遭受病毒攻击的风险。将数据源身份认证技术、密文附加消息认证码技术、时间戳等应用到信息数据的采集过程中,将隐私保护技术、数据加密技术、密钥管理技术、异地备份技术应用到数据存储过程中,降低数据被攻击窃取风险。
数据的安全管理策略
大数据时代,数据安全三分靠技术,七分靠管理。这不仅强调了大数据技术的重要性,又表明了安全管理更加重要,安全管理主要可通过以下手动实现。
行为规范:数据的交互、提取等操作要在统一标准下运作,正规有序使用和管理数据信息;
提前做好安全风险评估:根据不同来源的各类数据,分别设置不同的安全风险等级,并且制定相应的安全预案;
加强数据安全意识:为了让每一个工作人员充分了解自己在安全防护中的职责和担当,充分认识工作中信息安全的重要性,结合实际情况,周期性开展安全演练,提高员工安全意识。
大数据时代,日常生活与工作得到了极大的便利,同时信息安全也面临着各式风险与挑战。确保重要数据不被泄露,保护每个人信息安全需要大家共同努力。通过对大数据环境中存在的安全挑战进行分析,并且从数据安全治理的角度,提出数据安全防护以及相关应对措施,该方案能够适用于不同行业数据安全防护需求,确保数据信息的安全。